Осложнения и аварии при цементировании. Причины. Способы предупреждения и ликвидации

Ответ на вопрос: «Осложнения и аварии при цементировании. Причины. Способы предупреждения и ликвидации».

При цементировании скважин могут иметь место поглощение тампонажного раствора и промывочной жидкости, резкое повышение давления в период вытеснения тампонажного раствора из обсадной колонны, газопроявления и перетоки через заколонное пространство, чаще всего в период схватывания и твердения тампонажного раствора, неполное заполнение заданного интервала заколонного пространства тампонажным раствором, оголение башмака колонны и другие осложнения.

Поглощения являются следствием возникновения чрезмерно высоких давлений на стенки скважины при цементировании.

Может быть несколько причин опасно высокого повышения давления:

а) неправильный выбор величины плотности тампонажного раствора без учета индексов давлений поглощения, гидродинамических давлений при движении в заколонном пространстве и высоты интервала цементирования;

б) неправильный выбор режима и способа цементирования, без учета тех же факторов; гидродинамическое давление, особенно при турбулентном режиме течения, увеличивается с ростом скорости; при неправильном выборе скорости движения суммарное давление в заколонном пространстве может превысить давление поглощения наиболее слабых пород;

в) обезвоживание тампонажного раствора в интервале, сложенном проницаемыми породами;

г) образование большого объема густой высокотиксотропной смеси тампонажного раствора и промывочной жидкости;

д) одностороннее продвижение тампонажного раствора по широкой части поперечного сечения заколонного пространства;

е) преждевременное загустевание и схватывание тампонажного раствора вследствие неправильного выбора состава его, нарушения заданной рецептуры при приготовлении, значительного увеличения срока цементирования по сравнению с расчетным, применительно к которому разработана рецептура, или сильного обезвоживания при контакте с проницаемыми породами.

В процессе цементирования давление в заколонном пространстве всегда должно быть выше пластовых давлений. Под влиянием разности этих давлений неизбежно отфильтровывание части свободной воды из тампонажного раствора в проницаемые породы. Такое обезвоживание не представляет опасности только в том случае, если раствор находится в непрерывном движении, а на стенках скважины имеется малопроницаемая фильтрационная корка из частиц твердой фазы промывочной жидкости.

Если же эта корка на каком-либо участке скважины удалена, из тампонажного раствора будет отфильтровываться свободная вода, а на стенках скважины образуется цементная корка. Чем больше скорость течения, тем меньше толщина корки, особенно при турбулентном режиме течения.

Если же движение раствора хотя бы кратковременно приостанавливается, корка в короткий срок может заполнить полностью или почти полностью весь зазор между колонной и стенками скважины.

При восстановлении циркуляции на участках с толстой фильтрационной коркой возникают весьма большие местные гидравлические сопротивления. Для проталкивания раствора через такие участки нередко требуется настолько повысить давление, что могут быть разорваны породы в интервале между башмаком колонны и участком с толстой коркой либо обсадные трубы.

Чтобы устранить опасность быстрого обезвоживания тампонажного раствора, необходимо, во-первых, не допускать ни малейшей остановки в движении его с момента выхода первой порции в заколонное пространство до завершения всего процесса цементирования; во-вторых, снижать водоотдачу раствора путем соответствующей обработки до уровня не более 10—15 см3 за 30 мин или кольматировать поровые каналы в стенках скважины, используя для этого специальную буферную жидкость.

При разработке рецептуры тампонажного раствора для цементирования конкретного интервала скважины необходимо правильно оценить температуру и давление в нем и испытывать раствор при данных условиях.

Если свойства раствора определены при существенно иных условиях, например, при комнатной температуре и атмосферном давлении, при цементировании скважины свойства под воздействием высоких температуры и давления могут настолько измениться, что начнется преждевременное загустевание раствора и обусловленное этим повышение давления.

Осложнения могут быть следствием нарушения рецептуры раствора при его приготовлении на буровой: значительное уменьшение водосодержания в отдельных порциях раствора, закачиваемых в скважину, может быть причиной уменьшения подвижности и преждевременного загустевания, а значительное увеличение водосодержания — причиной резкого ухудшения седиментационной устойчивости, возникновения суффозионных каналов и т. п.

Как правило, в приготовлении тампонажного раствора на буровой одновременно участвуют несколько смесительных машин. Целесообразно порции раствора, приготовляемые разными машинами, направлять сначала в общую осреднительную емкость достаточно большого объема, тщательно перемешивать в ней и, лишь убедившись, что свойства перемешанного раствора соответствуют рекомендованным для цементирования данного интервала, закачивать его в скважину.

Отсюда вытекает необходимость непрерывного контроля свойств как порций раствора, приготовляемого каждой смесительной машиной, так и раствора, полученного после тщательного перемешивания в осреднительной емкости, и оперативного управления режимом работы машин с целью быстрого регулирования состава приготовляемого раствора и доведения свойств его до рекомендованных значений. Такой контроль и управление можно осуществлять, например, с помощью станций СКЦ-2М.

Газопроявления и перетоки пластовых жидкостей через заколонное пространство являются следствием снижения противодавления на стенки скважины ниже пластовых давлений в проницаемых горизонтах; возникновения каналов в заколонном пространстве, обусловленного седиментационной неустойчивостью тампонажного раствора и суффозией его; оставления в цементируемом интервале невытесненной промывочной жидкости и фильтрационных глинистых корок; усадки загустевшей промывочной жидкости и тампонажного камня; растрескивания глинистой пленки при контракции цемента. Они могут возникнуть также вследствие образования зазора между тампонажным камнем и обсадной колонной, обусловленного уменьшением давления и температуры жидкости в последней.

Предотвратить газопроявления и перетоки в период собственно цементирования можно, если соблюдать правильное соотношение между плотностями и объемами жидкостей, закачиваемых в заколонное пространство, а при обратном цементировании — также регулировать противодавление на устье обсадной колонны так, чтобы давление на стенки скважины всегда было выше пластового.

В период же схватывания и твердения тампонажного раствора снижение перового давления в нем неизбежно при любом составе раствора. Против проницаемых пластов оно снижается до пластового в течение нескольних часов, если на стенках скважины имеется фильтрационная глинистая корка, и еще быстрее при отсутствии корки. Так, при цементировании неглубоких скважин в Татарии и в Краснодарском крае поровое давление снижалось практически до пластового в течение 5—10 ч. При большом удалении от проницаемых пластов поровое давление при твердении снижается еще более значительно.

Один из наиболее эффективных способов предотвращения осложнений при цементировании и в последующий период — применение разделительных пакеров на обсадной колонне, такие пакеры для предотвращения газопроявлений и перетоков должны устанавливаться выше кровли горизонта с повышенным коэффициентом аномальности, а также между горизонтами с относительным перепадом пластовых давлений, значительно отличающимся от единицы, а для предотвращения поглощения при ступенчатом цементировании — выше кровли поглощающего объекта, всегда на участке с номинальным диаметром ствола против устойчивых пород.

Пакеры расширяются в радиальном направлении и плотно прижимаются к стенкам скважины под воздействием
механического или гидравлического усилия, прикладываемого к ним сразу же после окончания цементирования.

Причинами неполного заполнения заданного интервала заколонного пространства тампонажным раствором могут быть ошибки в определении объема этого пространства при планировании операции, ошибки в измерении объема раствора, фактически закачанного в скважину, поглощение раствора, а также оставление значительного объема последнего в обсадной колонне.

Необходимый для цементирования заданного интервала объем тампонажного раствора рассчитывают по среднему диаметру скважины, который определяют по кавернограмме, записанной перед спуском колонны.

Так как конфигурация поперечного сечения ствола часто заметно отличается от круга, объем, рассчитанный таким образом, следует рассматривать, как первое приближение. К нему нужно ввести поправочный коэффициент, чтобы компенсировать неточность в определении истинного объема заколонного пространства, а также учесть возможные потери раствора вследствие образования нетвердеющей смеси с буферной и промывочной жидкостями, из-за отфильтровывания некоторого количества воды через проницаемые стенки скважины и по другим причинам.

Одной из возможных ошибок в определении объема тампонажного раствора, фактически закачанного в скважину, является неправильный учет сжимаемости его, особенно в тех случаях, когда для обработки используют реагенты, способствующие вспениванию раствора (например, лигносульфонаты).

Наиболее надежные данные можно получить с помощью расходомера и сумматора, установленных на станции СКЦ. При отсутствии таких приборов коэффициент сжимаемости раствора следует оценить с помощью лабораторных приборов.

При спуске в скважину колонны, оборудованной скребками, турбулизаторами, центраторами и манжетами, вокруг этих элементов могут образовываться небольшие сальники из частиц содранной глинистой корки. Такие сальники повышают гидравлическое сопротивление заколонного пространства и, следовательно, благоприятствуют возникновению поглощений. Во избежание этого необходимого чаще делать промежуточные промывки и удалять из скважины скопившиеся кусочки содранной корки.

Вопросы для подготовки к госэкзамену по специальности «Бурение нефтяных и газовых скважин»

Поделитесь с друзьями:

Осложнения и аварии с обсадными колоннами. Причины. Способы предупреждения и ликвидации. Методика расчета допустимой скорости спуска колон в скважину. Какие факторы влияют на эту скорость?

Ответ на вопрос: «Осложнения и аварии с обсадными колоннами. Причины. Способы предупреждения и ликвидации. Методика расчета допустимой скорости спуска колон в скважину. Какие факторы влияют на эту скорость?»

К авариям с обсадными колоннами и элементами их оснастки относятся аварии со спускаемыми, спущенными и зацементированными обсадными колоннами или их частями, вызванные: разъединением по резьбовым соединениям; обрывом по сварному шву; смятием или разрывом по телу трубы; повреждением обсадной колонны при разбуривании цементного стакана, стоп-кольца, обратного клапана и направляющей пробки.

Аварии с обсадными колоннами составляют 7-8% всех видов аварий в бурении.

На ликвидацию их затрачивается более 10% времени, затрачиваемого на ликвидацию аварий всех типов.

Особенно тяжелы аварии этого вида в районах, где обсадные колонны спускают на большую глубину, и на разведочных площадях. В процессе разобщения пластов возникают аварии при спуске обсадных колонн, их цементировании, а также углублении скважины с зацементированными обсадными колоннами под последующую колонну.

Прихваты обсадных колонн, главным образом кондукторов и промежуточных колонн, происходят в основном на площадях, где разрез представлен неустойчивыми породами, бурение в которых вызывает сужение стенок скважин или обвалы пород.

Причинами прихвата обсадных колонн часто являются неудовлетворительная организация спуска колонн (несвоевременная промывка или отказ от предусмотренных планом промежуточных промывок, плохая проработка скважины перед спуском колонны, установка деревянных пробок, длительные остановки при спуске и т.д.) и технология бурения ствола скважины под обсадную колонну (бурение без УБТ и центраторов, несоблюдение оптимальных параметров режимов бурения в породах с чередующейся твердостью, использование кривых труб и бурового раствора плохого качества и т.д.).

Обсадные трубы разрушаются по телу в связи с образованием внутренних давлений при восстановлении циркуляции после окончания спуска колонны, закачивании в затрубное пространство последней порции цементного раствора, испытании обсадной колонны на герметичность и т.д.

Смятие обсадных колонн происходит как при спуске, так и в процессе бурения скважины. В зависимости от сложившихся обстоятельств трубы сминаются по-разному. Отдельные технологические упущения приводят к возникновению избыточных наружных давлений, которые вызывают смятие обсадных колонн. При действии на трубу избыточных давлений увеличивается и напряжение, которое достигает больших значений вначале в одной точке, а при дальнейшем росте давления зона повышенных напряжений начинает расширяться и труба сминается.

При спуске в скважину опасность смятия больше у тех обсадных колонн, которые имеют обратный клапан, так как не учитываются внешние добавочные усилия, возникающие из-за давления на некотором участке в колонне и за колонной, а также вследствие большой скорости погружения колонны.

При спуске колонны с обратным клапаном обычно стараются не допускать снижения уровня в колонне более чем на 200-250 м для труб диаметром 168 мм и более чем на 300-400 м для труб меньшего диаметра. В противном случае внешнее давление может достигнуть и даже превысить критическое, и колонна может смяться. Аварии такого вида особенно распространены при спуске колонн большого диаметра на большую глубину.

На месторождениях, где бурят с применением утяжеленных буровых растворов, опасность смятия труб в результате несвоевременного долива еще более возрастает. При спуске обсадной колонны с обратным клапаном происходят значительные колебания сминающих и растягивающих усилий. При совместном действии этих усилий сопротивление обсадных труб смятию снижается.

Большую опасность для обратного клапана представляет повышение гидродинамического давления при спуске обсадной колонны. Давление зависит от многих факторов, из которых основными являются статическое напряжение сдвига и вязкость бурового раствора, скорость спуска колонны, размер кольцевого зазора, диаметр колонны и др. Давление достигает 10 МПа и более.

В практике встречаются следующие случаи обрыва обсадных труб по месту их соединения, которые происходят вследствие неправильного свинчивания резьбы труб из-за перекоса осей или неправильной установки трубы в муфте (перекос). При перекосе осей деформируются витки резьбы труб, резьбу «заедает» и трубы полностью не свинчиваются или свинчиваются под большим усилием, приводящим к сильному нагреву места их соединения.

При спуске свинченных подобным образом труб места их соединения в колонне разрушаются. Неполное свинчивание резьбовых соединений обсадных труб наблюдается также из-за несоответствия размеров профиля резьбы и погрешности конусности, что приводит к разрушению резьбы. Наибольшее число аварий происходит с обсадными колоннами диаметром 219 мм и более. Обрыв труб по резьбовому соединению может произойти и вследствие приложения чрезмерных нагрузок, превышающих пределы прочности соединения.

Причиной выхода резьбы из сопряжения с резьбой муфты может быть неравнопрочность их соединения. Односторонняя нарезка резьбы на отдельных трубах ослабляет прочность одной части трубы и усиливает прочность другой ее части.

На участке трубы с ослабленной прочностью концентрируются напряжения, вызывающие деформацию тела трубы (на участке резьбы) с последующим выходом из сопряжения резьбы. Труба при равномерной нарезке резьбы имеет одинаковую толщину стенки. Несмотря на это, прочность резьбового соединения ниже прочности тела трубы в среднем на 30-35%.

Эксцентричная нарезка резьбового соединения обсадных колонн снижает прочность и без того ослабленного участка трубы, что и является в ряде случаев причиной аварий.

Вследствие нарушения технологии спуска обсадной колонны отдельные трубы или целые секции их могут упасть в скважину. Например, при быстром спуске обсадная колонна становится на уступ, элеватор идет вниз, защелка его поднимается, в результате элеватор открывается и колонна падает в скважину.

Выполнение сварочных работ на буровой (приварка муфт обсадных труб для укрепления резьбового соединения, приварка фонарей и т.д.) несоответствующими электродами и быстрое охлаждение труб при опускании их в буровой раствор, приваривание труб из легированных сталей марки 36Г2С38ХНМ без соблюдения соответствующего специального режима и специально подобранных электродов, спуск обсадных колонн без промежуточных промывок, предусмотренных планом спуска колонны, также приводят к авариям.

Вопросы для подготовки к госэкзамену по специальности «Бурение нефтяных и газовых скважин»

Поделитесь с друзьями:

Аварии с бурильной колонной. Причины. Способы предупреждения и ликвидации

Ответ на вопрос: «Аварии с бурильной колонной. Причины. Способы предупреждения и ликвидации».

Наибольшее число аварий с элементами буровой колонны происходит вследствие усталостных разрушений металла, возникающих при частом изменении нагрузки и направлении ее действия в более напряженно работающих местах.

Усталостные изломы наступают без всякого видимого изменения размеров и форм элементов бурильной колонны.

Внешне разрушение металла проявляется в возникновении трещин.

Изгибающие воздействия — основной фактор, приводящий к образованию остаточных напряжений во время вращения бурильной колонны.

Крутильный удар характерен для роторного бурения, особенно при работе с долотами режуще-скалывающего типа. Чем больше времени долото остается без движения, тем сильнее крутильные удары.

Вибрации бурильной колонны, возникающие главным образом при бурении шарошечными долотами, зависят от степени однородности и твердости разбуриваемых пород, пульсации бурового раствора, соответствия типа и диаметра долот разбуриваемым породам, компоновки бурильной колонны и ряда других факторов.

Перекатывание шарошек вызывает вертикальное перемещение центра тяжести долот, которое передается бурильной колонне. Чем тверже порода, тем интенсивнее колебания колонны.

Основные причины аварии с элементами бурильных колонн — нарушения технологии проводки скважин и правил эксплуатации бурильных колонн и их составных частей.

Вокруг замков и муфт, при помощи которых соединяются бурильные трубы, создаются зоны концентрации напряжений. Соединение замок-труба является более жестким, чем соединение труба-муфта.

При знакопеременных нагрузках, действующих на бурильную колонну, наибольшие напряжения концентрируются около первого витка резьбы на трубе, находящегося в полном сопряжении с резьбой бурильного замка.

Сломы по утолщенному концу трубы происходят и в других сечениях, расположенных на различных участках резьбы, или одновременно в нескольких сечениях. Однако наибольшее число аварий приходится на первый виток полного сопряжения резьбы. Эта часть — наиболее опасное место.

Резьба в свою очередь способствует образованию трещин в теле трубы, особенно при малых радиусах закругления: там, где резьба имеет острые утлы, в металле образуются ультрамикроскопические трещины.

Увеличение толщины стенки трубы путем высадки не предохраняет от распространения начавшегося трещинообразования в теле трубы.

Во всех элементах бурильной колонны возникают усталостные напряжения, которые зависят от условий работы колонны на отдельных ее участках и соблюдения буровой бригадой правил эксплуатации бурильных колонн.

Нередко для бурения скважин используют трубы, не соответствующие данной глубине и имеющие дефекты. В некоторых скважинах глубиной более 1500 м применяют трубы класса III вместо I и II.

Основной причиной большого числа аварий, связанных со сломом бурильных труб, является использование их не по назначению.

Передаваемые на резьбу усилия зависят от степени жесткости и плотности свинчивания труб. Если свинчивание проводилось автоматически, то резьбовые соединения могут перемещаться незначительно.

Недокрепление соединения способствует интенсивному перемещению плоскостей резьбы относительно друг друга, что ускоряет износ резьбы.

Одновременно на износ резьбы влияют число свинчиваний, качество бурового раствора, наличие в нем кварцевого песка и т.д., а также его давление в момент прокачки. Большие давления при турбинном бурении и бурении гидромониторными долотами снижают сроки службы замковых и резьбовых соединений, что менее характерно для роторного бурения и электробурения обычными долотами, где давление намного меньше.

Не отцентрированный по отношению к скважине фонарь вышки, а также смазка плохого качества для резьб способствуют ускорению износа резьбы при ее свинчивании.

Многие аварии возникают вследствие износа резьбовых соединений УБТ в связи с тем, что они работают в самых тяжелых условиях. Кроме того, резьба на соединениях УБТ слабее резьбы на замках, переводниках и долотах.

Аварии из-за нарушения резьбовых соединений вследствие заедания трубной резьбы происходят в результате увеличения нагрузки на резьбу.

Разрушения резьбовых соединений вызывают и другие причины: несоответствие элементов резьбы, особенно по конусности, применение смазки неудовлетворительного качества и т.д.

Размыв трубы происходит из-за дефектов на внутренней поверхности, нарушающих однородность. Такими дефектами являются плены, раковины, включения инородных материалов и другие повреждения, связанные с технологией изготовления труб.

Возникновение аварии от разрыва труб ускоряется совместным воздействием усталостных напряжений в металле и коррозии. Концентрация напряжений и дефекты в трубах приводят к образованию трещин.

Часты случаи аварий, связанные с падением бурильной колонны вследствие ее подъема на одном штропе, поломки и неисправности спускоподъемного инструмента, неисправности тормозной системы, слома или разрушения сопряжений ее элементов во время спускоподъемных операций и др.

Вопросы для подготовки к госэкзамену по специальности «Бурение нефтяных и газовых скважин»

Поделитесь с друзьями: